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Abstract—Interference neutralization (IN) is a new interference
management mechanism found from and inherent in interference
networks with relays. In this paper, we study the feasibility of
IN for relay-aided multi-input-multi-output (MIMO) interfer-
ence broadcast channel (MIMO-IBC) without symbol extension.
Assuming linear transceiver with multiple amplify-and-forward
relays, we consider fully connected symmetric systems, where
each base station (BS), relay, and user is equipped with multiple
antennas, and each user desires multiple data streams. We first
present the necessary condition of generalized IN, which is the
proper condition to ensure interference-free transmission with
linear transceivers for general relay-aided MIMO-IBC. We then
find and prove the necessary and sufficient condition of the fea-
sibility of coordinated IN and pure IN for a class of relay-aided
MIMO-IBC, where the sufficiency is proved by constructing a full
rank coefficient matrix of interference-free transmission equation
with sub-matrices of special structures. We show that when each
BS and user has the minimal antenna configuration for data trans-
mission, the sufficient and necessary condition for coordinated IN
is the same as the necessary condition for generalized IN. When
there is an arbitrary number of antennas at the BSs and users,
the derived sufficient conditions give rise to the minimum relay
configuration required by the coordinated IN and pure IN to
support a given number of data streams without interference. Our
proof sheds lights on how to use the relay resources to neutralize
the interference in an efficient way. The results are applicable
for both relay-aided MIMO-IBC and relay-aided interference
channel (MIMO-IC).

Index Terms—Interference neutralization, feasibility analysis,
DoF, interference channels, relay, MIMO.

I. INTRODUCTION

M ULTI-INPUT-MULTI-OUTPUT (MIMO) interference
channel (IC) and interference broadcast channel (IBC)

refer to setups in cellular networks where multiple multi-an-
tenna base stations (BSs) transmit to multiple multi-antenna
users in the same time/frequency resource without data sharing
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among the BS. In MIMO-IC, each BS communicates with only
one user. In MIMO-IBC, each BS communicates with multiple
users.
After significant research efforts in the past decades, the ca-

pacity region of the interference channel is still unknown. As a
first order approximation to the sum capacity in high signal to
noise ratio (SNR) regime, the degrees of freedom (DoF) have
been extensively studied. Recently, interference alignment (IA)
[1], [2] was shown to be able to achieve the information-theo-
retic maximum DoF of some interference networks. Moreover,
it was shown that the overall DoF grows linearly with the cell
number for MIMO-IC and MIMO-IBC with some configu-
rations [2], [3]. Nonetheless, in order to achieve the promised
gain, either infinite symbol extensions over time/frequency [2]
or a large number of antennas at each user are required [3],
which is not realistic. In practice, the achievable DoF does not
grow linearly with in general [4].
Introducing relays to IC provides an effective way of reducing

the number of symbol extensions. It was first noted in [5] that a
relay-aided three-cell single-input-single-output (SISO)-IC can
achieve a DoF of with only two symbol extensions. Similar
results were obtained in [6] and [7] for -cell MIMO-IC with
antennas at each BS and each user, where DoF can

be achieved with a half-duplex relay, or equivalently with two
symbol extensions.
When relays are available in IC, on the other hand, it was

found in [8] that another interference management technique
called interference neutralization (IN) is essential for achieving
high DoF. If there are more than one propagation paths from a
source to its interfering destination, which is common in relay
systems, multiple copies of one interference signal arriving
at each user can add up to zero. In other words, the inter-
ference can be eliminated in the air, i.e., neutralized. Other
techniques with the same idea in essence were independently
proposed in the literature, albeit under different names such as
distributed orthogonalization in [9] and orthogonalize-and-for-
ward in [10].
The relay-aided IC represents a class of more complicated

interference networks. With the possible exception of IA, inter-
ference avoiding and cancelation, IN as a newmeans of interfer-
ence removal is still not well understood. To find the potential
of relay-aided IC with constant coefficients, researchers have
investigated the DoF for various settings. Analogous to IC and
IBC, the achievable DoF of relay-aided IC with linear trans-
ceivers reflects the subspace dimension required to support in-
terference-free transmission. This suggests that the maximum
DoF achieved by linear transceivers can be found by analyzing
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the minimum numbers of antennas at the BSs, relays and users
that guarantees the linear transceivers to be feasible. Such a fea-
sibility analysis includes finding and proving the necessary and
sufficient conditions.
For a relay-aided -cell SISO-IC where each BS and each

user respectively have a single antenna, a maximum of non-
interfering data streams can be transmitted with a single full-
duplex -antenna relay, or with half-duplex
single-antenna two-hop relays [10]. In [11], the authors consid-
ered the SISO-IC with multiple half-duplex relays where the
direct links among BSs and users exist. They showed that by
using half-duplex relays each with a single antenna,
a total of data streams can be transmitted without interfer-
ence. Compared with [10], the number of relays is reduced be-
cause the direct links are considered. In these scenarios, the
interference management scheme for achieving the maximum
DoF is pure IN (PIN), where only the relays are employed to
eliminate inter-cell interference (ICI). For relay-aided -cell
MIMO-IC where each BS or each user has more antennas than
its desired data streams, IA can be employed in conjunction
with IN to achieve the maximum DoF. The authors of [12]
and [13] introduced aligned interference neutralization for a
two-source two-destination relay-aidedMIMO-IC, respectively
considering one instantaneous relay and two full-duplex relays.
The achievable DoF region of the two-source two-destination
two-relay aided MIMO-IC was further derived in [14]. For a
relay-aided -cell MIMO-IC where each BS conveys desired
data stream, the authors of [15] obtained a DoF upper bound.
The results show that to transmit data streams without inter-
ference, the total number of antennas at full-duplex relays needs
to exceed and a proper condition originally proposed for
MIMO-IC in [16] needs to be satisfied.
While priori results for the achievable DoF in [11]–[14] and

the DoF upper bound in [15] provide useful insights to un-
derstand the potential of relay-aided IC, for general multi-cell
relay-aided MIMO-IC, the maximum achievable DoF remains
unknown. The minimum number of antennas at the relays found
in [10] only ensures that the interference can be eliminated when
applied to the MIMO scenario, but not guarantees that the de-
sired data can be conveyed. The results in [11]–[14] cannot be
extended to the setups with more than two cells.
In this paper, we analyze the feasibility of relay-aided

MIMO-IBC with constant coefficients, which transmits a
target number of non-interfering data streams with linear trans-
ceivers. Specifically, we examine the sufficient condition and
the necessary condition of using linear transceivers for ensuring
interference-free transmission.
We consider fully connected relay-aided MIMO-IBC, where

there exist direct links between the BSs and the users. We con-
sider symmetric multi-cell multi-relay networks, where each BS
and each user have identical number of antennas and desire for
identical number of data streams. For such a general setting,
the interference management mechanism may include interfer-
ence avoidance, interference cancelation, IA and IN, which is
referred to as generalized interference neutralization (GIN) for
simplicity. While analyzing the necessary and sufficient condi-
tion of GIN feasibility is very challenging, we solve the problem
in part by providing the necessary condition for GIN and the

sufficient conditions for other two IN strategies, PIN and coor-
dinated IN (CIN) defined later.
Our main contributions are as follows. For a large class of

relay-aidedMIMO-IBCwhose system parameters satisfy a mild
condition that covers most scenarios in cellular networks, we
find and prove the necessary and sufficient conditions for CIN
and PIN, from which the achievable DoFs of the networks can
be derived. We show that when the networks are with minimal
antenna configuration at both BSs and users, the necessary and
sufficient condition for CIN coincides with the necessary condi-
tion for GIN, from which the maximum achievable DoF can be
derived. All previous results in the literature are special cases of
ours.
Notations: Transpose and conjugate transpose are repre-

sented by and , respectively. is the Kronecker
product operator, denotes the vectorization of matrix
by concatenating the columns of matrix into a single column
vector. and denote the identity matrix of size

, the all zero matrix of size and the all zero matrix
of size , respectively. and are the gener-
alized inverse and the rank of matrix .
denotes the block diagonal matrix with as its
diagonal blocks. and are respectively the ceiling and
floor functions. is the number of possibilities to choose
numbers out of .

II. SYSTEM MODEL

Consider a downlink network with coordinating BSs,
where each BS intends to transmit data streams to each of the
users in its own cell. Each BS is equipped with

antennas and each user is with antennas. To assist
downlink transmission, amplify-and-forward (AF) relays
are deployed and each relay has antennas. This system is
denoted as the system for short in
the sequel.
We consider fully connected networks, where the link from

each BS to each user (called direct link), the link from each BS
to each relay (called backhaul link), and the link from each relay
to each user (called access link) all exist.
We consider frequency division half-duplex relays, where the

relays forward signals in the same frequency band as the direct
link but receive in a different frequency band. This is called out-
band receiving in-band forwarding relay in literature [17]–[19],
which is more desirable than other half-duplex relays in prac-
tice [20], [21] because the user only needs to receive in one fre-
quency band. When considering other half-duplex relays, the
approach to analyze feasibility condition is similar to the ap-
proach in this paper despite that the system model will differ.
The system model is illustrated in Fig. 1, where the backhaul
link operates in frequency band and the direct and access
links operate in frequency band . The two frequency bands
are with identical bandwidth but not overlap.
Denote as the channel matrix from

BS to the th user in the th cell (i.e., user ),
as the channel matrix from relay to user
as the channel matrix from BS to relay

, where and .
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Fig. 1. Example of a two-cell relay-aided MIMO IBC with two users in each
cell and two relays in the network, .

All elements in these channel matrices are independent and
identically distributed (i.i.d.) random variables.
The received signal at user can be expressed as

(1)

where is the symbol vector for user
is the symbol vector for the users in

cell is the transmit matrix of BS for
user through the direct link,

is the transmit matrix of BS for
user through the backhaul link,

is the receive matrix at user that
is full rank, is the relay processing matrix at
relay , and and are the noises at
relay and user , respectively.
The first term of (1) is the desired signal of user , which

is received from two kinds of propagation links: (1) the direct
signal link from the BS to the user, whose channel matrix is

, and (2) the signal link via relay, whose effective channel

matrix is . The second term is the multi-user in-

terference (MUI) at user generated from its master BS when
simultaneously transmitting to other users in cell . Comparing
the first and second terms, we can see that the MUI undergoes

the same channel as the desired signal. The third term is the ICI
at user generated by other BSs when transmitting to their own
users. The ICI is also received through two links: (1) the direct
ICI link, whose channel matrix is , and (2) the ICI link

via relay, whose effective channel matrix is

.
In order to ensure a total number of data streams

to be transmitted without interference, the linear trans-
ceivers at the BSs, relays and users, and

, should
satisfy the following interference-free transmission constraints

(2a)

(2b)

(2c)

where (2a) is the data transmission constraint to ensure user
being able to receive desired data streams, and (2b) and (2c)
are the zero-forcing constraints to remove the MUI and ICI for
the user, respectively.
To differentiate the roles of the transceivers in ensuring

interference-free transmission, we respectively express
and as the concatenation of an inner transmit ma-
trix and an outer transmit matrix as and

, where is a full rank square
matrix, and . Similarly, we
express as , where the outer receive
matrix is a full rank square matrix, and the
inner receive matrix .
Since the desired signal and the MUI received at user un-

dergo the same channel, we can combine (2a) and (2b) into the
following constraint to ensure MUI-free data transmission for
user ,

(3)

Combining the constraints for all users in cell , we can obtain
a compact MUI-free transmission constraints as

...
...

(4)

where
is a full rank square matrix, and

.
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As long as the term in the bracket is full rank, we can al-
ways design the outer transmit matrix and outer receive ma-
trix to ensure (4) satisfied. Therefore, (2a) and (2b) are
equivalent to the following constraint,

(5)

where is the total number of data streams to be trans-
mitted in one cell.
Using the same way, it is not hard to show that the ICI-free

constraint (2c) is equivalent to the following constraint,

(6)

where the outer transmit matrix and outer receive matrix
are eliminated because they are full rank square ma-

trices that do not affect the constraint.
From (4), we can see that the role of the outer transmit and

receive matrices is to ensure MUI-free. From (5) and (6), we
can see that the role of the inner transmit and receive matrices
is to ensure data transmission and ICI-free.
To fully employ the resource of the considered system,

all the inner transceivers at the BSs, relays and users,
and

and , should be involved in removing ICI, where
the interference management mechanism may include inter-
ference avoidance, interference cancelation, IA and IN. For
simplicity, we refer to such a strategy with linear transceiver as
generalized interference neutralization (GIN).
From the necessary and sufficient condition (i.e., both neces-

sary and sufficient) of GIN feasibility, the maximum achievable
DoF of the relay-aided MIMO-IBC with linear transceiver can
be derived. To find the feasibility condition of GIN, in the rest of
the paper we study the solvability of the interference-free trans-
mission equations (5) and (6).
The major parameters and symbols to be used in this paper

are listed in Table I.

III. MAIN RESULTS

In this section, we present the main results on the feasibility
analysis for the relay-aided MIMO-
IBC, which includes finding and proving the necessary condi-
tion and the sufficient condition.
For MIMO-IC or MIMO-IBC, the feasibility condition of

linear IA can be found from analyzing the solvability of a set of
multi-variate quadratic equations. To find and prove the condi-
tions that are both necessary and sufficient is not easy [4], [22].
For relay-aided MIMO-IBC, the interference-free transmission
constraints are multi-variate cubic equations, analyzing the nec-
essary and sufficient condition of GIN is more challenging.
In fact, the necessary condition (that may not be sufficient) for

the relay-aided MIMO-IBC is easy to obtain by extending the
result for MIMO-IC, which is the well-known proper condition.
Proper condition was first proposed for MIMO-IC in [16] by

relating the linear IA feasibility to the problem of determining

TABLE I
MAJOR PARAMETERS AND SYMBOLS

the solvability of a system characterized by multivariate poly-
nomial equations, and then was proved to be necessary for IA
feasibility of MIMO-IC [4] and MIMO-IBC [22]. A system is
proper if the number of independent variables in the interfer-
ence-free transmission equations is less than that of equations.
Because (5) and (6) are multivariate cubic equations, the proper
condition is also the necessary condition of GIN feasibility for
the relay-aided MIMO-IBC.
For the considered system with frequency division half-du-

plex relays, the proper condition can be obtained using the
same method as in [16]. By counting the number of equations
in (5) and (6) and the number of independent variables in

and , the proper condition is obtained as

(7)

which is the necessary condition of GIN feasibility.
To ensure that each BS can transmit data streams and

each user can receive data streams, the numbers of antennas
at each BS and each user should satisfy

(8)

which is referred to as minimal antenna configuration.
Equations (7) and (8) reflect the minimum system resource

required for convoying data streams without interfer-
ence in the network, from which the DoF upper bound of the
relay-aided MIMO-IBC can be derived. As discussed in [4],
[22], the proper condition may not be the sufficient condition
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of IA feasibility. This indicates that the DoF upper bound de-
rived from the proper condition may not be achievable.
To analyze the sufficient condition for the relay-aidedMIMO-

IBC, we linearize the cubic equations by considering two inter-
ference coordination strategies. This is one typical methodology
to find and prove the sufficient condition [22].
Specifically, when the transmit matrix at each BS for the

backhaul link and the receive matrix at each user (i.e., and
) do not participate in removing ICI, we call the strategy as

the coordinated interference neutralization (CIN).
When the ICI is only eliminated by relays with , we call

the strategy as pure interference neutralization (PIN).
In general, the achievable DoF derived from the sufficient

condition of PIN feasibility is lower than that from CIN, and
both are lower than that from the GIN feasibility. Nonetheless,
as shown later, for a special class of systems with minimal an-
tenna configuration, the sufficient condition of CIN feasibility
coincides with the necessary condition of GIN feasibility, i.e., it
is the necessary and sufficient condition for the GIN.
The following theorems respectively provide the feasibility

conditions when considering the two strategies. When each BS
has enough antennas to avoid all the ICI, i.e., ,
it is easy to show that the sufficient and necessary condition of
CIN feasibility is

(9)

Therefore, in Theorem 1 we only consider the systems with
.

Theorem 1: For a relay-aided MIMO-IBC
where , the

necessary condition of CIN feasibility is

(10)

and the sufficient condition is also (10) for the systems whose
parameters satisfy the following conditions

(11a)

(11b)

(11c)

where

and .
From the definition of and , we can show that

. Therefore, with the grow of , both the
values of and increase. This suggests that when
the number of relays increases, the theorem covers more system
setups. In fact, it is not hard to show that Theorem 1 applies
for most practical cellular networks. For the cases that are not
covered by the theorem, simulation results show that is

still the minimum number of relay antennas required for the
system with to be feasible,

which unfortunately cannot be proved rigorously.
Corollary 1: When and , both the

proper condition in (7) and the necessary condition in (10) re-
duce to .
This indicates that for the systems with minimal antenna con-

figuration whose parameters satisfying (11a), (11b), (11c), the
necessary and sufficient condition of CIN coincides with the
necessary condition of GIN. In other words, (10) is the nec-
essary and sufficient condition of CIN. For these systems, we
can obtain the maximum achievable DoF of the relay-aided
MIMO-IBC as follows.
Corollary 2: For a relay-aided MIMO-IBC with and

, the maximum DoF is

(12)

which is achievable by GIN for the systems whose parameters
satisfy (11a), (11b), (11c).
The corollary implies that in order to increase the DoF, it is

more efficient to increase the number of relay antennas rather
than increase the number of relays. Specifically, the DoF will
grow linearly with in the following configurations: (1) if
does not depend on but increases with , i.e.,

; (2) if and ; and (3) if
but does not depend on .

Theorem 2: For the relay-aided MIMO-IBC
, the necessary condition of

PIN feasibility is

(13)

and the sufficient condition is also (13) for the systems
whose parameters satisfy the conditions in the same form as
(11a)–(11c) but and being replaced by

and .
By comparing the necessary condition for CIN in (10) with

that for GIN in (7), we can see how many more antenna re-
sources are required if we do not design the transmit matrix at
each BS for the backhaul link and the receive matrix at each
user for removing ICI. This is because (7) is for GIN with full
coordination among all the transceivers ,
and .
By comparing the two theorems, it is not hard to show that

. From the value of we can see how many more
antenna resources are required if only relays are used for re-
moving ICI.
By comparing Corollary 1 and Theorem 2, we can see that

even with the minimal antenna configuration, the CIN still re-
quires fewer antennas than the PIN. This comes from coordi-
nating the transmit matrices at the BSs for direct links and the
precessing matrices at the relays in CIN.
For general relay-aided MIMO-IBC with given antenna re-

sources, with the GIN higher DoF might be achieved, but every
node in the network needs the channel information of all links,
which leads to large training and/or feedback overhead. With
the CIN, the achievable DoF is reduced, while the required
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overhead to obtain channels is also reduced. With the PIN, the
achieved DoF is the lowest, yet the required channel informa-
tion is also minimal. Therefore, the CIN and PIN strategies
are of practical interest, despite that they are not optimal in
the sense to achieving the maximum DoF of the considered
interference network.

IV. PROOF OF THE MAIN RESULTS

A. Proof of Theorem 1

For the coordinated interference neutralization, the transmit
matrix at each BS for the backhaul link and the receive matrix
at each user are designed for other purpose instead of removing
ICI. To analyze the feasibility condition of CIN, we set the inner
transmit matrix and the inner receive matrix as
arbitrary given matrices. Then, the ICI-free constraints (6) be-
come linear equations of and as

(14)

where and
are the effective channel matrices of the corresponding

direct links, access links and backhaul links, respectively.
We further write all the ICI-free constraints related to BS in

(14) in a compact form as follows

(15)

where

includes all the channel matrices of the direct ICI
links from BS to the users in other cells,

is composed of the channel matrices from relay
to all the users except cell .
Similarly, the MUI-free transmission constraint (5) becomes

(16)

1) Proof of Necessity: Considering that ,

by expressing the matrices and as and

and considering that is a full rank square

matrix, we can separate (15) into two equations,

(17a)

(17b)

where

and .
These two equations are solvable means that the

ICIs generated from BS can be eliminated, where (17a) and
(17b) respectively correspond to and ICIs, where

.When (17b) is solvable, ICIs can be eliminated
by the relays (i.e., with ), and the remaining ICIs can be
jointly eliminated by the relays and BSs (i.e., with and ).
If the equation in (17b) is solvable, the relay processing ma-

trix can be obtained, and correspondingly the transmit ma-
trix at the BS for direct link can be determined from (17a).
Therefore, we only need to analyze the solvability of (17b).
Denote

. Using the property of Kronecker product
that , the equations in (17b)
can be written as

(18)

where

...
...

and is
composed of the unknown variables in the relay processing ma-
trices.
From the result in [23] we know that (17b) has full rank solu-

tions (i.e., the solution of will be full rank) iff is full row
rank. When is full row rank, obtained from (17a) is full
rank with probability one. Then, the rank constraint (16) is sat-
isfied because in the first term is independent of the other
terms.
As a result, in order to ensure the constraints in (15) and (16)

satisfied, must be a full row rank fat matrix, i.e.,

(19)

which proves that the necessary condition is (10).
2) Proof of Sufficiency: To prove the sufficient condition,

we only need to prove that for the

system with (that is the minimum number of
relay antennas satisfying the necessary condition (10)), if the
conditions (11a)–(11c) are satisfied, the matrix will be full
row rank with probability one.
From the definition we know that is composed of multiple

Kronecker products of channel matrices, whose rank is hard to
find. We use an alternative approach to prove by constructing a
full row rank coefficient matrix.
From the results of Theorem 2 in [24] we know that if is

full row rank for any given values of and will be
full rank for any matrices and with i.i.d entries. The
dimension of the matrices and in are respectively

and .
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In the sequel, we first construct the coefficient matrix as a
block diagonal matrix by setting “0”s and “1”s in and set-
ting the elements in as arbitrary i.i.d. variables, and then
construct each block diagonal matrix. Finally, we prove that the
constructed coefficient matrix are full row rank with probability
one.
We start by observing the structure of the coefficient matrix.

We rewrite it in a more detailed form with denoting the
effective channel coefficient from the th antenna of BS to the
th antenna of relay , which includes row blocks as follows

Unlike MIMO-IC, the coefficient matrix of the relay-aided
MIMO-IBC is not a sparse matrix, and hence the method of
finding the non-singular Jacobin matrix in [4] is not applicable.
The coefficient matrix is composed of blocks

.
The structure of matrix suggests that if the non-zero columns
in and
do not overlap, the non-zero columns of and will not
overlap. For simplicity and easy understanding, we set these
non-zero columns as uniform as possible in the subma-
trices of . Considering that has columns,
each can have at most non-zero columns not
overlapping with . Specifically, denote and

. For the sub-matrices ,
let of them have non-zero columns and the rest
matrices have non-zero columns. In this way, we can con-
struct a matrix of with the following structure

where the first matrices have non-zero columns and
the rest have non-zero columns, therefore the total number of
non-zero columns is . Actually,
it does not matter which matrices have and which have
non-zero columns.
Then, by reorganizing the columns, we can rewrite the non-

zero blocks in each row block of as shown in (20) at the
bottom of the page, which includes row sub-blocks and
column sub-blocks of . Since the size of is ,
condition (11a) ensures that is a fat matrix.
In this way, the coefficient matrix is decoupled into a block

diagonal matrix

(21)

whose rank is determined by the sum of the rank of each .
In the sequel, we construct a full rank matrix . We begin

with introducing a sub-matrix of with special structure. We
proceed to show that if such a sub-matrix is constructed fol-
lowing three rules the sub-matrix will be full row rank. Finally,
we show that when conditions (11a)–(11c) are satisfied, can
be constructed as a block diagonal matrix composed of several
full rank sub-matrices.
Define a sub-matrix of with the structure

shown in (22) at the bottom of the page, where
, are

...
...

(20)

. . .
. . .

. . .
...

...

(22)
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composed of block matrices each with size ,
and denote the relay indexes. We refer to

as a relay index set of .
Such a sub-matrix can be obtained from by setting some of

the scalars “ ” in (20) as “0” or “1”. The number of row blocks
in is and , and the number of column blocks is

and .

In order to be full row rank, should be a fat matrix.
Then, its numbers of rows and columns should satisfy

, which amounts to the following relationship

(23)

where , which was defined in Theorem 1
and is rewritten here for convenience.
The following Lemma provides the construction rules to en-

sure sub-matrix to be full row rank with probability one.
Since the way to construct the sub-matrix for each cell is the
same, we therefore neglect the cell index in the block matrices

inside for conciseness.

Lemma 1: The sub-matrix will be full row rank if it is
constructed with the following three rules:

Rule 1: In each of the first row blocks of , the relay
indexes of the non-zero blocks of “ ” differ and the indexes
in different row blocks are not all the same.
Rule 2: In each of the last row blocks of , the

first relay indexes are different, and these indexes
in different row blocks are not all the same.
Rule 3: For and , if the relay index
in in the th row block is the same as one of the relay

indexes in , or if the relay indexes in are all the
same as those in , the block in the th row block can
be transformed to a block of zero by elementary transformation.
We refer to this kind of block as “erasable” block. Otherwise,
the block is “unerasable”. In the lower right corner of ,
there should be at least one “unerasable” block in each row
block and each column block, and for each “unerasable” block,
there is at least another one “unerasable” block in either the
same row or the same column block.

Proof: See Appendix A.
According to Rule 1, all the relay indexes in the first row

blocks of should be different and they are not all the same
to each other. This requires that and .
According to Rule 2, the relay indexes from the th

to the th row blocks are not all the same. This requires that
.

According to Rule 3, there is at least one relay index in
that is different from all the relay indexes in
. This requires that .

Consequently, if we can construct a sub-matrix that satisfies
these requirements, the sub-matrix will be full row rank.
From the definition , we know that

(24)

From the definition , we know that

. Upon substituting into (24), we have

Since , it follows that is always satisfied.
Considering that , as long as
is satisfied, will always be satisfied.

This suggests that if we can construct a sub-matrix sat-

isfying the following conditions, will be full row rank,

(24a)

(24b)

As shown from (24b), when the number of row blocks in

, is small, the condition is more easily to be satisfied.
Based on this observation, we divide into multiple smaller
sub-matrices with fewer row blocks.
The expressions of the left-hand side of (24a) and (24b) are

the same with those in (11b) and (11c) in Theorem 1. Therefore,
if we can find the values of and that satisfy (24a) and (24b),
and show that if (11b) and (11c) satisfy then conditions (24a)

and (24b) will satisfy, then we can construct a sub-matrix
of full row rank. This is exactly what we will do in the proof of
the next lemma.
Lemma 2: For any system whose parameters satisfy condi-

tions (11b) and (11c), we can construct as a block diagonal
matrix as follows

(25)

where all the diagonal blocks are full row rank.
Proof: See Appendix B.

Since each diagonal block of the constructed coefficient ma-
trix is full row rank, is full row rank.
This completes the proof of Theorem 1.

B. Proof of Theorem 2

For the pure interference neutralization, only relays are em-
ployed for removing ICI. To analyze the feasibility of the PIN,
we set all the inner transmit or receive matrices
and as arbitrary. Then, the interference-free transmission
constraints (5) and (6) become linear functions of , which are

(25a)

(25b)

where .
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The compact form of ICI-free constraints (25b) related to BS
is therefore

(26)

where
.

Again, by using the property of Kronecker product, the ICI-
free equation can be expressed as

(27)

where

...
...

is defined as in (18) and .
The elements in the first term in (25a) are i.i.d, it is full

rank almost surely. Since it is independent of other terms in the
equation, the MUI-free transmission constraint is automatically
satisfied. As a result, the feasibility only relies on the solvability
of (27).
According to linear algebra, (27) is solvable iff

. Because all the elements in are independent
from those in , this is equivalent to requiring that is full
row rank. Therefore, the necessary and sufficient condition for
the solvability of (27) is

(28)

The necessary condition in (13) is now proved.
The proof of sufficiency is the same as in Theorem 1 by set-

ting and .

V. DISCUSSIONS

In this section, we strive to explain the intuitive meaning im-
plied by the proof of the main results as well as the parameters
appeared in the theorems, and show the connection of our re-
sults with existing results in the literature.

A. Understanding the Main Results

1) Understanding the Two Strategies: For the PIN, we have
shown that the ICI-free constraint is (27), from which we can
explain the name for this strategy. Each element of vector is
the channel coefficient from one transmit antenna at a BS to
one receive antenna at a user in other cells. Each element of

is the effective channel coefficient of the ICI link via relay
between the same pair of transmit and receive antennas. (27)
indicates that the ICIs received at the user through the direct
ICI link and through the relays have the same amplitude but
opposite signs, such that these two copies are removed “in the
air”, i.e., are neutralized. Because all the ICIs are neutralized
by the relays, where a -cell network degrades to isolated
multi-user MIMO systems, the strategy is pure IN.
For the CIN, however, although (18) looks similar to (27),

from which we cannot see how the ICI is removed because

is no longer the effective channel coefficient of the ICI link via
relay. Nonetheless, comparing (15) with (26), we can see that
by coordinating the transmit matrices at the BSs for direct links
and the processing matrices at the relays, the ICIs received at
the user through the direct ICI link and through the relays are
neutralized.
2) Understanding How the Relay Antennas are Used: From

the way to construct , we can reveal how the relay re-
sources are used to neutralize the ICI.
Since each column block of corresponds to a relay an-

tenna, and each row block corresponds to the ICI generated to
one user, the constructed denotes that if appears in one
row block of (i.e., the corresponding ), one antenna
of relay will be involved in eliminating the ICI generated to
one user in cell .
As shown in the proof of Lemma 1, the sub-matrices can be

divided into four types, which reflect different ways that the
relay antennas are used to neutralize the ICI.
• When , the sub-matrix reduces to Type Imatrix
shown in (A.1). When the coefficient matrix only contains
the type I matrices each only appears once in the same
column block of . It means that if one antenna of a relay
is used to help remove the ICI generated to a specific user,
the antenna will not be used to eliminate the ICI generated
to other users. Such kind of relay antenna is called “private
antenna”.

• When , the sub-matrix reduces to Type
II matrix shown in (A.2). The matrix appears in all
row blocks, which means that the corresponding relay an-
tenna is involved in eliminating the ICI generated to all
the users. Such kind of relay antenna is called “shared
antenna”.

• When , the sub-matrix reduces to Type III
matrix shown in (A.13). In this scenario, one relay antenna
is shared by two users and the last user shares one antenna
with each of the previous users.

• For the case of , the sub-matrix has the gen-
eral form shown in (22) that is defined as Type IV matrix.
In this scenario, the relay antennas are used in a hybrid way
for those of type I, type II and type III matrices.

From the procedure of proof, we know that is the number
of ICIs generated to one data stream that needs to be eliminated
by relays. is the minimum number of antennas at each
relay that satisfies the necessary condition .
Since there are data streams in the system and each data
stream experiences ICIs, the term on the right-hand side of
the inequality denotes the total number of ICIs, and the term
on the left-hand side is the number of variables provided by
the relays. Therefore can also be interpreted as the
number of variables provided by each relay antenna. Then,
can be viewed as the minimum number of relay antennas

required by each data stream to eliminate the ICIs. Since
there are relay antennas in the system, can be
viewed as the number of relay antennas uniformly allocated
for each cell. The condition (11a), , indicates
that the number of variables in each cell should exceed the
number of ICIs in the same cell.
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From the proof, the parameter can be viewed as the
number of variables required from one relay antenna besides
the variables provided by the “private”
antennas to eliminate the ICIs at one data stream, and can
be regarded as the total number of “shared” relay antennas in
each cell.
When and (corresponding to Case

1.2 in the proof of Lemma 2), only a small fraction of the vari-
ables provided by a “shared” relay antenna are required to elim-
inate the ICI to one data stream. In this case, the antenna can
be shared with many data streams, and is constructed only
with type II matrix. This represents one extreme case with min-
imum number of “shared antennas”: multiple users in each cell
“share” a single relay antenna.
When and (corresponding to Case

2.2 in the proof of Lemma 2), on the other hand, a large fraction
of the variables for eliminating the ICI to one data stream needs
to be provided by a “shared” relay antenna. In this case, although
the antenna is shared by two data streams, the variables it pro-
vided is only sufficient enough for eliminating the ICI of one
data stream, for another data stream sharing the same antenna,
more variables from other “shared” antennas are necessary. The
coefficient matrix of such a system can be constructed only
with type III matrices. This represents another extreme case with
maximum number of “shared antennas”: each of the first
users “shares” one antenna with the th user.
When is with other values (corresponding to Cases 1.3

and 2.3 in the proof of Lemma 2), the coefficient matrix of the
system is constructed with both types II and IV matrices or both
types III and IV matrices. This is a scenario in between the two
extreme cases.
When (corresponding to Cases 1.1 and 2.1 in the

proof of Lemma 2), is constructed only with type I matrices
. In this case, the overall number of relay antennas is large

enough such that all the data streams only need the “private
antennas” to remove their ICIs. In other words, the relays can
provide different antennas to neutralize each ICI. For this kind
of systems, the sufficiency proof is significantly simplified as
shown in the proof of Lemma 1.

B. Relation With Existing Results

In the sequel, we list the class of systems satisfying the con-
ditions in Theorem 1 and Theorem 2, and show that existing
results in literature are all special cases of ours. In fact, for all
the systems considered in existing works, proving the sufficient
condition is much simpler, because the coefficient matrices can
be constructed only with the type I matrices.
For the class of systems with

, and , it is not hard to show that the
conditions (11a)–(11c) in Theorem 1 automatically satisfy. This
indicates that these systems can transmit without interference by
using CIN iff (10) is true. When and , our result
is the same as that presented in [11] for SISO-IC, which is a
special case of Corollary 1.
For the class of systems with the following configurations, it

is not hard to show that the conditions (11a)–(11c) in Theorem
2 automatically satisfy (recall that of the two theorems are

different and thus the conditions differ). This indicates that these
systems can transmit without interference by using PIN iff (13)
is true:
• and , or

, and , where
and are arbitrary integers.

• . When , our result
reduces to , which is higher than that
obtained for a two-hop relay-aided SISO-IC in [10], whose
required minimum number of relays is . This
is because we consider the direct links among the BSs and
users.

• . For such a two-cell two-
relay setting, overall data streams can be transmitted
without interference according to our results. Under the
two-cell two-hop two-relay setting, data streams
can be transmitted as reported in [13] and [14]. Again, the
difference comes from the direct links we considered.

In summary, we have obtained the sufficient condition of fea-
sibility for a much wider class of systems than priori works,
which are reflected in requiring less minimum system resources
or supporting more interference-free data streams.

VI. CONCLUSION

In this paper, we analyzed the feasibility of interference neu-
tralization for fully connected relay-aided MIMO-IBC without
symbol extension. We derived the necessary and sufficient con-
dition for a class of relay-aided MIMO-IBC with coordinated
and pure interference neutralization, where the sufficiency was
proved by constructing a full row rank coefficient matrix of
interference-free transmission equation with special structure.
We further showed that for the system with minimal antenna
configuration at each BS and user, the sufficient condition
for coordinated interference neutralization coincides with the
necessary condition of generalized interference neutralization,
from which the maximum achievable DoF can be derived. For
the systems with more antennas at each BS or each user, from
the provided sufficient condition we can derive the achiev-
able DoF. All system settings considered in the literature are
special cases of ours. Our conclusions are applicable to both
relay-aided MIMO-IBC and MIMO-IC.

APPENDIX A
PROOF OF LEMMA 1

Proof: The sub-matrix reduces to several special
types depending on the relationship of and . In the sequel,
we prove that when constructed following the three rules, each
type of the sub-matrix will be full row rank.
Type I: When , the sub-matrix reduces to

(A.1)

whose size is .
Since , we know that the sub-matrix is always a

fat matrix. When it is constructed following Rule 1, the relay
indexes in thematrix will be all different. Therefore, is a fat
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matrix composed of statistically independent block matrices.
This indicates that it is full row rank with probability one.
Type II: When , the sub-matrix reduces to

. . .
...

(A.2)

When it is constructed following Rule 1 and Rule 2, the
relay indexes in each are different, and the relay index sets in

are not all the same. When it is constructed further
following Rule 3, in the last column block of the last
row blocks of , there should be at least one “unerasable”
block in each of the row blocks. As a result, the blocks
of in the right lower corner of the sub-matrix should all be
“unerasable”. Moreover, the index will be different from all
the relay indexes in . This means is statistically
independent of .
As defined in (22), is of size . Considering

that the relay indexes in each of are different and
according to the definition of in Theorem 1,

is full column rank with probability one, i.e.,
.

Using the property of the rank of matrix in [25], which is

we can obtain the rank of as

(A.3)

where , and
is the left null space of , therefore its rank is

[26].
According to random matrix theory,

if random matrix is statisti-
cally independent from a random matrix [26]. Since is
independent of , the second term in (A.3) is

(A.4)

According to the property that
[25], the rank of matrix is upper

bounded as follows

(A.5)

where the last inequality is obtained from (23) with . Since
, we know from (A.4) that

. Consequently, according to (A.3), we have

(A.6)

In the following, we usemathematical induction to prove that
for , we always have

(A.7)

where is arbitrarily
re-ordered numbers of .
For . The conclusion holds because

.
Suppose that for , (A.7) always holds. In this

case, because is statistically independent of
and hence independent of , we have

(A.8)

Next, we prove that when , (A.7) holds.
Using the property of matrix rank in [25], which is

we can obtain the rank of as

(A.9)

where the second term is due to .
When the sub-matrix is constructed following Rule 2, the

blocks in are not all the same as those in
. In other words, for each matrix , there exists

at least one block in that is different from all the
blocks in .
If there exists one block in , say the block with sub-

script , that is different from all the blocks in
, the block will be statistically

independent from all the blocks in . In this case,
the second term in (A.9) is

(A.10)

where is the matrix obtained from by removing .
Considering (A.8) and substituting (A.10) into (A.9), we can

obtain that

(A.11)

Further considering (A.5), we know that (A.7) holds.
If there does not exist such a block in , we can divide the

matrices , into several groups by the fol-
lowing steps. First of all, the matrices whose blocks
are all different from the first block in , are in the first
group and the number of the matrices in this group is denoted
as . Then, among the rest matrixes whose blocks are all
different from the second block in , are in the second
group, and so on. In this way, in is statistically inde-
pendent from the blocks in matrices of the th group, and

is the same as one of the blocks in matrices of the next
groups. In this case, the second term in (A.9) can be determined
as

. . .

(A.12)
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where are respectively the numbers of the ma-
trices in each group, such that ,
and are non-zero blocks.
Considering (A.8) and substituting (A.12) into (A.9), we can

also obtain (A.11). Again with (A.5), we know that (A.7) holds
when . This completes the mathematical induction.
Finally, substituting (A.7) into (A.6), we can obtain the rank

of as , which is the number of rows

in . As a result, is full row rank.
Type III: When , the sub-matrix reduces to

. . .
. . .

(A.13)

When the sub-matrix is constructed following Rule 3, the blocks
in the last column blocks of the last row block of
should all be “unerasable”. The relay indexes are
all different from the relay indexes in , and the relay
index set of is not the same as each relay index set of

.
Divide each block as , where

and

. Therefore, the matrix in the
th row block is a full rank square matrix. By taking matrix

elementary transformation to the sub-matrix (first
eliminating the block in each of the first row blocks

using , and then eliminating the block in the last

row block), we can correspondingly obtain the rank of
as

(A.14)

where is a random matrix.
Using the property that

, we further obtain that

(A.15)

where we used the fact that and
.

When the sub-matrix is constructed following Rule 1, the
relay indexes in the first row blocks are not all the same.
Therefore, the blocks can be set to be different.

With the construction Rule 3, the relay indexes
are all different from the relay indexes in . This sug-
gests that is statistically independent from . As a result,
the matrix

(A.16)

is a full rank matrix of size and inde-
pendent from . Then, the rank of the third term in (A.15) is

Since is a fat matrix, we can obtain that
, or equivalently

. We can correspondingly

obtain that

. Upon substituting into (A.15), we have

(A.17)

This indicates that the sub-matrix is full row rank.
Type IV: When and satisfy conditions (11b) and (11c),

the sub-matrix is in the general form as in (22).
When the sub-matrix is constructed following Rule 1, all the

relay indexes in the first row blocks of should be
different and they are not all the same as each other. When fol-
lowing Rule 2, the relay indexes from its th row
block to the th block are not all the same. When following
Rule 3, there is at least one relay index in that is dif-
ferent from all the relay indexes in .
Similar to the derivation for (A.14), we can obtain the rank

of as

...

(A.18)

Using the same way for the matrix in (A.16),

can also be constructed as a

full rank matrix. Then, the third term of (A.18) equals to the
rank of .
Using the same fact to derive (A.15) and using (A.7) to de-

termine the rank of the matrix , from (A.18) we have

(A.19)

This completes the proof.
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APPENDIX B
PROOF OF LEMMA 2

Proof: Remind that matrix in (20) has row blocks
and column blocks. Condition (11a) ensures that is a fat
matrix, which is necessary to ensure it as full row rank.
An immediate way to construct is to set it as a type IV

matrix shown in (22), where . However, such
a simple construction does not guarantee the matrix to be full
rank. To construct a full rank matrix , we first construct it as
a block diagonal matrix shown in (25) by setting corresponding
scalars “g” as “0” and “1”, which is composed of multiple sub-

matrices . Then, we construct the sub-matrices that are full
rank.
From Lemma 1 we know that if is constructed fol-

lowing the three rules, then the sub-matrix is full rank. After
Lemma 1 we have shown that if satisfy (24a) and (24b),

is full rank. If we can further show that the conditions in
(24a) and (24b) have the same expressions as those in (11b) and
(11c), then we can prove this lemma.
Suppose that the matrix are composed of sub-ma-

trices , where and as
shown in (23).
Define a parameter set

. If we can find a subset of that
satisfies the following conditions

(B.2)

i.e., the multiple sub-matrices can compose the block diagonal
matrix shown in (25), and all the sub-matrices are full rank, then
Lemma 2 is proved.
Whether we can find a subset satisfying (B.2) depends on

the relationships between and . From condi-
tion (11a) and the definition of and , we can obtain

(B.3)

In the following, we find the subset considering different rela-
tionships of the parameters.
From the relationship , we

know that . In the sequel, we find corresponding subsets

according to whether or and the

relationship of and .

Case 1: .

Case 1.1: and .
In this case, a subset satisfying (B.2) is

(B.4)

which means that the matrix can be composed of sub-
matrices of , i.e., type I matrices.

From (B.4), we know that in this case, .
Then, conditions (24a) and (24b) as well as conditions (11b) and
(11c) become

(B.5)

which are automatically satisfied because .
This means that when the conditions in Theorem 1 are satis-

fied, the matrix can be composed as a block diagonal matrix
whose diagonal matrices are full row rank type I matrices.
Case 1.2: and .
In this case, the values of and should be judiciously

chosen. We rewrite (B.2) as

(B.6)

where the parameters and should satisfy

.

Because , we can obtain that

. Therefore, we can find a subset satisfying (B.6)
as follows

(B.7)

From (B.7), we know that in this case,
. By setting

and , then the
two conditions in (24a) and (24b) become

(B.8)

On the other hand, the parameter in conditions (11b) and
(11c) has different forms according to whether or

.
When , we can obtain that , then

. Because , we can obtain . According
to the definition of in Theorem 1, we can obtain that when

, then , which result in .

When . As a result, we always have .
When , we can obtain that , then

, while we still have . Again from the defini-
tion of , we can obtain that . As a result, we always have

. Then conditions (11b) and (11c) become

(B.9)

Further considering (B.8), we can see that when conditions

(11b) and (11c) are satisfied, the sub-matrices and

will be full row rank, which are type II matrices.
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Consequently, when the conditions in Theorem 1 are satis-
fied, the matrix can be composed as a block diagonal matrix
whose diagonal matrices are full row rank type II matrices.
Case 1.3: .

In this case, we know that . We also
rewrite (B.2) as (B.6). Then, we need to find a subset

satisfying (B.6).
By setting , (B.6) becomes

(B.9a)

(B.9b)

By multiplying to (B.9b) and subtracting it from (B.9a),
we can obtain that

(B.10)

One solution of the subset satisfying (B.10) can be deter-
mined as follows: we find and from ,
and equals the right-hand side of (B.10). According to the
relationship that , we can find a subset as

from which we can obtain that and
because . Then

the two condition in (24a) and (24b) becomes

(B.11)

On the other hand, because , the
parameters and are respectively determined as

and . We can also obtain that . Then
conditions (11b) and (11c) become

(B.12)

where is obtained because .

We can see that the conditions in (B.12) are the same as those
in (B.11). This indicates that when conditions (11b) and (11c)

are satisfied, the sub-matrices and will be full
row rank. They are respectively a type II and type IV matrices.
Case 2: (or equivalently ).

Case 2.1: .
In this case, the subset satisfying (B.2) is the same as in

Case 1.1. When (24a) and (24b) are satisfied, the two conditions
in (11b) and (11c) are also satisfied due to the same reason as in
Case 1.1.
Cases 2.2 and 2.3 come from (B.3): , which

results in .

Case 2.2: and

.
In this case, we can rewrite (B.2) as

(B.13)

where .

Therefore, we can find a subset satisfying (B.13) as
follows

(B.14)

from which we can obtain that ,
and . Then the two conditions
in (24a) and (24b) become

(B.15)

In this case, because , we have

and . Moreover, we have .
According to the definition of , we know that when

, therefore, . Then the conditions in
(11b) and (11c) become exactly the same as (B.15).
This indicates that when conditions (11b) and (11c) satisfy,

the sub-matrices and will be full row rank. They
are all type III matrices according to (B.14).
Case 2.3: and

.
In this case, we first set , we can

rewrite (B.2) as

(B.15a)

(B.15b)
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By multiplying to (B.15b) and subtracting it from
(B.15a), we can obtain that

(B.16)

One solution of the subset satisfying (B.16) can be deter-
mined as follows: we find and from

, and equals the right-hand side of (B.16). Ac-
cording to the relationship that ,

we can find a subset as

(B.17)

from which we can obtain
. Then the two

conditions in (24a) and (24b) become

(B.18)

On the other hand, we also have

and . Then the conditions in (11b) and (11c) become

(B.19)

When these conditions satisfy, those in (B.18) will satisfy.
This indicates that when conditions (11b) and (11c) satisfy,

the sub-matrices and are full row rank.
Summarizing all the cases, we now have shown that when

the conditions in Theorem 1 are satisfied, the matrix can
be constructed as a full row rank block diagonal matrix. When

as in Case 1.1 and Case 2.1, the constructed is only
composed of full row rank type I sub-matrices. Otherwise, the
constructed matrices are composed of type II, type III and type
IV sub-matrices. This completes the proof.
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